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Pulling reptating polymers by one end: Magnetophoresis in the Rubinstein-Duke model
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We consider the magnetophoresis problem within the Rubinstein-Duke model, i.e., a reptating polymer
pulled by a constant field applied to a single end of a chain. Extensive density matrix renormalization calcu-
lations are presented of the drift velocity and the profile of the chain for various strengths of the driving field
and chain lengths. We show that the velocities and the average densities of the stored length are well described
by simple interpolating crossover formulas, derived under the assumption that the difference between the drift
and curvilinear velocities vanishes for sufficiently long chains. The profiles, which describe the average shape
of the reptating chain, also show such interesting features as some nonmonotonic behavior of the link densities
for sufficiently strong pulling fields. We develop a description in which a distinction is made between links
entering at the pulled head and at the unpulled tail. At weak fields the separation between the head zone and the
tail zone meanders through the whole chain, while the probability of finding it close to the edges drops off. At
strong fields the tail zone is confined to a small region close to the unpulled edge of the polymer.

DOI: 10.1103/PhysRevE.68.061801 PACS number~s!: 61.25.Hq, 47.50.1d, 05.10.2a, 83.10.Kn
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I. INTRODUCTION

The magnetophoresis problem is a member of the clas
reptation problems in which a long polymer is drive
through a gel. The reptative motion of the polymer can
successfully modeled by a lattice version using sections
the polymer~the reptons! as the mobile units, which hop
stochastically from cell to cell. The driving field is incorpo
rated as a bias in the hopping rates, favoring the motion
the field direction. A simple and adequate model is
Rubinstein-Duke model@1#, which represents the polymer a
a chain ofN independently moving reptons, with the restri
tion that the integrity of the chain is preserved. The repto
trace out a connected string of cells in space, each cell c
taining at least one repton. The cells, which can be multi
occupied, carry the extra reptons as units of stored length
order to preserve the integrity of the chain, only those r
tons that are located in cells with stored length can hop.

Usually one considers the case of polyelectrolytes
which the reptons are uniformly charged. Thus the driv
field pulls equally on all reptons and the bias is the same
the hopping rates all along the chain. A practical situat
where this occurs is in DNA electrophoresis@2#. The DNA
molecules, being acidic, become charged in solution,
when they are placed in a gel subject to an external elec
field, they perform a biased reptative motion along the fi
direction. Electrophoresis is a technique of great importa
in molecular biology and sequence analysis, as it allows
to separate DNA strands according to their length@2#.

In nature the charge distribution is of course not alwa
uniform. The extreme alternative is the case where all r
tons are neutral except one end repton, which is charge
possible realization of such a situation is a magnetic be
attached at one end of the polymer, which is driven by
magnetic field. Therefore this case can be referred to as
1063-651X/2003/68~6!/061801~7!/$20.00 68 0618
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magnetophoresis~MP! problem@3#. It is the subject of this
paper. As we will frequently compare our findings with th
more common case of the uniformly charged polymer,
will, for brevity, refer to the latter as the electrophoresis~EP!
problem and to the present one as the MP problem, altho
the distinction between the two is not electromagnetic,
only in the forces exerted on the reptons~see Fig. 1!.

The MP problem, within the framework of th
Rubinstein-Duke model, has so far been studied by mean
Monte Carlo simulations@3#, and the calculations were
mostly restricted to the drift velocity as a function of th
applied field and chain length. In this paper we analyze
MP problem by means of density-matrix renormalizatio
group~DMRG! techniques, which allow us to perform a d
tailed analysis of both global quantities such as drift a

FIG. 1. Examples of configurations of reptating polymers in t
Rubinstein-Duke model in the case of~a! electrophoresis and~b!
magnetophoresis. Black reptons perform a biased motion along
direction of the applied field while white reptons are unbiased. T
configuration for a chain withN reptons is given by a set ofN
21 integers (y1 ,y2 , . . . ,yN21) measuring the distance betwee
two neighboring reptons along the field direction~thus yi50,
61). For the two examples shown the coordinates
(1,0,1,1,1,0,1,1) for~a! and (1,1,1,0,21,1,1,1,0,1,0) for~b!.
©2003 The American Physical Society01-1
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curvilinear velocities and diffusion coefficient, and also
local average shapes of the polymer.

The dynamics of the reptating chain is governed by
master equation, which we put in the form

]P~y,t !

]t
5(

y8
H~y,y8!P~y8,t !. ~1!

Here y stands for the set of linksy1 , . . . ,yN21, whereyj
measures the distance between the reptonsj and j 11, along
the direction of the applied field. Notice that this represen
tion takes into account only the motion of the polymer alo
the field direction, i.e., the model becomes one dimensio
In our lattice representation theyj can take the values61
and 0. The valueyj50 corresponds to the case that the re
tons j and j 11 occupy the same cell. Thus each zero is
unit of stored length. The nonzero values represent the c
where j 11 occupies a cell ‘‘higher’’~1! or ‘‘lower’’ ( 21)
than j. ‘‘Higher’’ and ‘‘lower’’ refer to the position in the
direction of the field.y represents a complete configuratio
of the chain~see Fig. 1!. P(y,t) is the probability distribu-
tion of the configuration at timet and the matrixH(y,y8)
contains the gain and loss transitions fromy8 to y. The bias
in the hopping rate is contained in the matrix elements ofH.
Generally, we have for the bias factor

Bj5exp~aqjE/kBT! ~2!

with qj the charge of reptonj, E the driving field, a the
distance between adjacent cells~measured along the fiel
direction!, andkBT the standard combination of Boltzmann
constant and the absolute temperature. The dimensionali
the embedding space affects the rate of the end repton
tion, as ind dimensions~for a hypercubic lattice! this can
stretch ontod neighboring cells. This implies that the rate
for the reactions 0→61 for the end links aredB1 and
dBN21. A detailed account of the effect of the end rept
stretching was given in Ref.@4#. Here, for simplicity we set
d51, i.e., the rates for the end reptons are the same as
the bulk reptons. In the MP problem allqj50 except forj
5N. We put

BN[B5exp~«/2! ~3!

and use« as the parameter for the driving field. The oth
parameter of the model is the number of reptons,N.

We have chosen this ‘‘Hamiltonian form’’ of the mast
equation in order to stress the formal correspondence wi
quantum mechanical model governed by a Hamiltonian m
trix. The DMRG method exploits this analogy, and indeed
success in one-dimensional quantum problems carries
to reptation problems@4–6#. We are interested in the station
ary state of the probability distribution. In quantum langua
this corresponds to finding the right eigenvector ofH belong-
ing to the eigenvalue zero. The adaptation of the DMR
method to the MP problem is straightforward, and the d
presented in this paper are obtained by the DMRG meth
An important difference from the master equation is that
quantum mechanical problems the Hamiltonian is Hermiti
whereas in the reptation problem the matrixH is non-
06180
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Hermitian, due to the influence of the driving field. Th
restricts the applicability of the DMRG method to mode
ately long chains and/or small driving fields.

The physics of the EP and MP problems is qualitative
different. As illustration, consider the weak field case«
small!, where the Nernst-Einstein relationv5FD relates the
drift velocity v to the total applied forceF and the diffusion
coefficientD. The forceF equalsN« in the EP case, since
each repton is pulled. It is well known thatv scales asv
;«/N, yielding for the diffusion the nontrivial resultD
;N22. In the MP problemD will be essentially the same, a
hopping is limited by the availability of stored length. I
both cases the motion can be considered as diffusion
stored length. SinceF5« in the MP problem, we expect th
drift velocity to scale asv;«N22, a feature that is borne ou
by our calculations.

In Sec. II we discuss some moment equations deri
from the master equation which are more helpful than in
EP problem in analyzing the drift and curvilinear velocit
They are expressed in terms of the probabilitiesnj

k that the
link j has the valueyj5k. The sum of thenj

k adds up to 1:

nj
01nj

11nj
251. ~4!

Thus it suffices to consider the two quantitiesnj
0 and mj

defined by

nj
05^12yj

2&, mj5^yj&5nj
12nj

2 . ~5!

nj
0 can be called the local density of stored length.mj is a

measure for the local orientation and will be referred to
the profile of the chain.

In Secs. III and IV we present our data for the velociti
and the profiles. The analysis is most transparent in
strong field limit, where we can make an ansatz which
most perfectly represents the data. In Sec. IV we discuss
behavior of the profile for weak and strong pulling fields.

II. MOMENTS OF THE MASTER EQUATION

The DMRG method deals with the whole probability di
tribution P(y). In the MP problem it is fruitful to consider
moments of the master equation. One set of moments is
tained by multiplying Eq.~1! by yj and then summing ove
all y. This leads toN21 relations, which can be seen as
expression of the fact that the drift velocityv across all the
N21 links of the chain must be the same on the average.
even more useful set of relations is obtained by multiplyi
the master equation byyj

2 and summing over ally. The re-
sulting N21 relations are an expression of the fact that
curvilinear velocityJ is the same across all links. These r
lations take the form

J5nj 21
0 2nj

0 , 2, j ,N21, ~6!

which can be viewed as the familiar law that the currenJ
equals minus the gradient of the density of the stored len
In addition to Eq.~6! one has two relations@7# concerning
the traffic in and out of both ends of the chain. They rea
1-2
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PULLING REPTATING POLYMERS BY ONE END: . . . PHYSICAL REVIEW E 68, 061801 ~2003!
J5123n1
0 ,

J5~nN21
0 2nN21

2 !B1~nN21
0 2nN21

1 !B21. ~7!

The expression for the drift velocity involves correlatio
between neighboring links,

v5^~12yj 21
2 !yj2~12yj

2!yj 21&, ~8!

and it is therefore not as informative as Eq.~6!. As one sees
Eq. ~7! involves only averages over the first~last! link. This
holds also for the expressions for the drift velocity in term
of the averages of the first and last link:

v5m1 ,

v5~nN21
0 1nN21

2 !B2~nN21
0 1nN21

1 !B21. ~9!

These equations were derived by Barkema and Schu¨tz @3#
using balance arguments.

Equation~6! is a powerful relation since it allows one t
express the density of stored length in terms of the curvi
ear velocity,

nj
05n1

02~ j 21!J, ~10!

showing that the density profile is linear in the position of t
cell. In particular, Eq.~10! implies a relation between th
densities of the first and last cells:

nN21
0 5n1

02~N22!J. ~11!

We have used the linearity of the densitynj
0 as a check of the

numerical calculations.
Counting the number of unknowns (v, J, n1

0, nN21
0 , m1 ,

mN21) and the number of equations~7!, ~9!, and~11!, we see
that we have one more unknown than equations. This si
tion is similar to the EP problem. There the expression
the curvilinear velocity does not obtain the simple form~6!,
due to the bias on the internal reptons. So one misses rela
~11!. On the other handJ50 for EP, due to the symmetry o
the polymer on exchanging head and tail. Thus in both ca
the moment equations are not sufficient to determine the
locities. Higher moments do not lead to additional inform
tion since again higher order correlations appear.

III. GLOBAL QUANTITIES

We discuss first the behavior of global quantities like t
drift and curvilinear velocities and the diffusion constant.

A. The weak field limit

In the weak field limit the polymer assumes mostly a ra
dom configuration and all the densitiesnj

k are close to 1/3.
The overall behavior of the drift velocityv as a function of«
andN is given in Fig. 2. Note that the drift velocity become
proportional to« for small«, as expected on the basis of th
Nernst-Einstein relation discussed above. For stronger fie
the velocity saturates to finite values, as discussed in the
paragraph. A similar dependence ofv on « and N was ob-
06180
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served in the Monte Carlo study of Ref.@3#. The limiting
behavior for small« and largeN is thus

v~N!;«D~N!;
«

N2
, ~12!

with D(N) the zero field diffusion coefficient. The scalin
behavior ofD(N) as a function of the lengthN has been
studied quite intensively@8–11#. Reptation theory predicts
that D(N);1/N2, while conflicting results appeared in ex
perimental measurements, for which both 1/N2 and, more
recently, 1/N2.3 @12# have been reported.

A detailed study of the scaling ofD(N) within the
Rubinstein-Duke model by means of the DMRG method w
recently performed@4,5#, for various end-point stretching
rates. In that case the diffusion coefficient was calcula
from the limiting value of the drift velocity for«→0, with
the field acting on all reptons~the EP problem!. Here we
repeat the same analysis only for a single case~using a
stretching rated51 following the definition ofd of Refs.
@4,5#!. The advantage of calculatingD(N) with a small field
acting only on an end repton is that the DMRG procedure
much more stable in this case and one can compute lo
chains. This is due to the fact that in the MP problem no
Hermiticity is restricted only to the repton where the field
applied. As mentioned in the Introduction, non-Hermitici
hampers the efficiency of the DMRG method.

In order to calculate the diffusion coefficient from th
Nernst-Einstein relationD5 lim«→0v/« in practice, we used
a small field («51023) and checked explicitly that the re
sults do not change for smaller fields. The scaling behav
of the diffusion coefficient is expected to be

D~N!N25A1
A8

AN
1••• ~13!

with A and A8 some constants. The form of the subleadi
correction toD(N) has been debated for a while@13,14# and

FIG. 2. Plot of logv vs log« for variousN.
1-3
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recent DMRG results suggest that it is of the type 1/AN @5#,
supporting Eq.~13!. The coefficient has been determined e
actly @14–16#: A51/3.

To analyze the scaling behavior ofD(N) it is most con-
venient to use the logarithmic derivative of the DMRG da

a~N!52
ln@D~N!#2 ln@D~N12!#

ln N2 ln~N12!
, ~14!

which is shown forN59,11, . . . ,51 inFig. 3. Substituting
Eq. ~13! into Eq. ~14!, one finds for the effective exponen
a(N)521A8/(2AAN), a behavior which is accurately re
produced by our numerical data of Fig. 3. The present res
corroborate previous claims@5# about the scaling form o
D(N).

B. The strong field limit

In the strong field limit the polymer assumes an orien
configuration, with the1 links dominating at the pulled end
At the other end we still have a substantial number of links
since the polymer can move only by the diffusion of stor
length from the tail to the head. Eliminatingn1

0 from Eq.~10!
with the use of Eq.~7!, we get

nN21
0 5

1

3
~12KJ!, ~15!

where K53N25. In order thatnN21
0 stays finite for N

→`, the curvilinear velocity must vanish as

J;K21, N→`. ~16!

As one sees from Eq.~15!, this limiting value is not suffi-
cient to determine the limiting value of densitynN21

0 , which
is sensitive to the corrections to Eq.~16!. For the strong field
limit it is useful to relate the drift velocity to the curvilinea
velocity. With Eqs.~7! and ~8! we get

FIG. 3. Plot of the effective exponenta(N) calculated for«
51023 up to N551 from the decay of the diffusion coefficien
D(N) and plotted as a function of 1/AN. The fact thata(N) lin-
early approaches the limiting value 2 supports the scaling form
the diffusion coefficient given in Eq.~13!.
06180
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v5J12~nN21
2 B2nN21

0 B21!. ~17!

Now, if the polymer is fully stretched,v and J become the
same. In Fig. 4 we have plotted the differencev2J as cal-
culated by the DMRG for various fields and chain length
We note that it is small for all values of« andN, in particular
for strong fields, and that this tendency is enforced for lo
polymers. That it also is small in the small field limit is
consequence of the fact that both quantities vanish in
limit. In order for the difference to vanish, we must have

nN21
0 .B2nN21

2 . ~18!

Now we may use this relation as the sixth relation, whi
enables us to make all the desired quantities explicit fu
tions of « andN. We find, for instance,

J~B!5v~B!5
B422B211

K~B41B211!13B3
, ~19!

nN21
0 ~B!5

11B/K

B21113B/K11/B2
. ~20!

This explicit field dependence is compared to the data in F
5 and Fig. 6. The agreement is excellent in both cases. N
also that Eq.~19! is consistent with Eq.~16! and that it
provides the proportionality coefficient.

However, the crossover formulas~19! and ~20! do not
describe the subtle dependencies in the limit of small fie
B5exp(«/2)→1. In this limit the drift velocity vanishes as
v;«, while one observes from Eq.~19! that the curvilinear
velocity vanishes asJ;«2. For this reason, in the limit«
→0, the crossover formula~19! predictsv;«2/(3N25), in
disagreement with the correct scaling behavior of Eq.~12!.
The strong field limit does not suffer from this problem. W
note, for instance, that in the limitN→` the saturation value
of the velocity for B→` is in agreement with the exac
expression given in Ref.@3#: v51/(3N25).

r

FIG. 4. Difference between the driftv and curvilinearJ veloci-
ties as a function of the applied field and for various chain leng
1-4
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IV. PROFILES

Next we discuss some profiles, i.e., the local orientat
mi[^yi& as a function of the segment position along t
chain. We considerN21 segments; thusN reptons with the
charged one at the one head positionN. Figure 7 shows a
plot of mi /e as a function of the scaled variable (i 21)/(N
22) for chains of various lengths and at fixed field«
50.001. This profile corresponds to the linear regime wh
the drift velocity scales asv;«. The notable feature is a
symmetry between head and tail with respect to the cente
the chain, although the magnetophoresis problem is cle
asymmetric. This symmetry can be shown@17# to be strict in
the weak field limit. It disappears for stronger values of t
field as Fig. 8 shows, where profiles are plotted fore51 and
various lengthsN.

In order to analyze the data further we also plot the in
vidual probabilitiesni

k for having a1, 0, or 2 at a sitei of
the chain. For small values ofe ~not shown here! the curves
are all near 1/3, with a slight excess of1 links at the head
and a depletion of2 links. The densities of1 and2 links
are monotonically increasing and decreasing functions of

FIG. 5. Comparison between the DMRG data~symbols! and
the crossover formula~solid lines! of Eq. ~19! for the curvilinear
velocity J.

FIG. 6. Comparison between the DMRG data~symbols! and the
crossover formula~solid lines! of Eq. ~20! for nN21

0 .
06180
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position i. For intermediate fieldse51, the densities are
more interesting, and in Fig. 9 we plot the values ofni

0 , ni
1 ,

and ni
2 for N551. The linear behavior forni

0 is consistent
with Eq. ~10!. The curve forni

1 is monotonically increasing
but that forni

2 is not monotonically decreasing.
The qualitative behavior of the orientation profile can

understood by considering the ‘‘origin’’ of the nonzero link
(yi561) as introduced by Barkema and Newman@9#. In the
MP problem more links are created at the pulled head tha
the tail. They stream gradually down to the tail. We can ke
track for every linkyi561 whether it is formed at the hea
or at the tail. After sufficient time the chain is divided int
two zones: a head zone and a tail zone. They are sepa
by a small intermediate region with zeros~we do not follow
the origin of the zeros!. The zones remain separated becau
the yi561 created at the head cannot cross theyi561
created at the tail. The division between the two zones fl
tuates in time and occasionally the tail zone disappe
while very rarely~particularly at large fields! the head zone
vanishes. The larger the force on the head, the larger
asymmetry between the head and tail zones. We supplem
these speculations by making an assumption on the ratio

FIG. 7. Average profileŝ yi&/« for various lengths and for
«51023.

FIG. 8. As in Fig. 7 for«51.
1-5
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r i~ j !5pi
1~ j !/pi

2~ j !, ~21!

wherepi
6( j ) is the probability of finding a6 at i when the

division is atj. We put

r i~ j !5H r h for j , i ,

1 for j > i .

~22!

~23!

Here r h is an unknown parameter and as there are more1
links than2 links in the head region one hasr h.1. Since in
the tail zone there is no distinction between1 and 2 we
have set the ratio equal to 1. The idea underlying the assu
tion of ratios in the head and tail zones that do not depend
their position along the chain is that the1 and2 links are
interlocked. So while moving in their zone the ratio cann
change.

At position i the density of nonzero links (1 and 2) is
equal to 12ni

0 . We definef i as the fraction of such nonzer
links that are in the head zone. Notice that, strictly speak
this is different from definingf i as the probability of finding
the sitei in the head zone, as we do not keep track whet
the zeros originate from the head or the tail. Only throu
the1 or 2 will we be able to identify the two regions. With
the above definition, for instance, the quantityf i(12ni

0) is
the fraction of nonzero links in the head region. One c
express the densitiesni

6 in terms of f i as

ni
15S f i

r h

r h11
1~12 f i !

1

2D @12ni
0#,

ni
25S f i

1

r h11
1~12 f i !

1

2D @12ni
0#. ~24!

In both equations the terms proportional tof i are the contri-
butions wheni is in the head zone while the terms propo
tional to 12 f i are the contributions from the case in whichi
is in the tail zone. We see that in the magnetophoresis p

FIG. 9. Plot of the average densities^ni
1&, ^ni

0&, and^ni
2& for

«51 andN551. Inset: Enlargement of the densityni
2 , showing

nonmonotonic behavior with a linear increase as a function ofi on
approaching the pulled edge.
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lem the situation simplifies, since we do not have to wo
about the tail zone. It drops out when we consider the pro

mi5ni
12ni

25
r h21

r h11
f i@12ni

0#. ~25!

Thus the profilemi is, apart from the known factor 12ni
0 ,

directly related to the fractionf i . The latter has a simple
interpretation. It starts out ati 51 with a value nearly zero
since the head zone will only seldom extend over the wh
chain. It ends ati 5N21 at a value very close to 1, since th
tail zone will hardly ever extend over the whole zone. W
can use this fact to tie the ratior h to the end point values
discussed earlier, by considering Eq.~25! for i 5N21,

^yN21&5
r h21

r h11
@12nN21

0 #, ~26!

and solving forr h . It leads to

^yi&5^yN21& f j

12ni
0

12nN21
0

. ~27!

This form contains onlyf i as unknown. We can draw som
conclusions from Eqs.~25! and~27! for weak fields, as well
as for long chains at stronger fields.

A. Weak fields

For e→0 we may put

r h511ahe. ~28!

The function 12ni
0 will approach the limit 2/3, so Eq.~25!

becomes

^yi&5e
ah

3
f i . ~29!

For the zero field limit of the profile we can take the ze
field limit of f i . It has the property that the head and t
become equivalent, or

f i512 f N112 i or f i1 f N112 i51. ~30!

The zero field limit of f i was determined in@9# by Monte
Carlo simulations. We note that Eq.~30! is consistent with
the mentioned@17# symmetry in^yi&. One should haveah
52 in order that the profile becomes 2e/3 at the head, as is
observed~see Fig. 7!. This is perfectly in agreement with th
value r h5B4;112« for small «. Combining Eq.~29! and
the first Eq.~9! we find that f 1 is a measure for the drif
velocity v. According to Eq.~12! f 1 should vanish as 1/3N2.
This result has been derived in@9#.

Another feature of Fig. 7 seems to be the collapse of
data on a single curve. Further data on longer chains s
that the flattening off at the ends of the chain shrinks with
size of the system and that the slope in the middle slo
decreases. This is another manifestation of the slow appro
toward asymptotic behavior@17# for largeN.
1-6
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PULLING REPTATING POLYMERS BY ONE END: . . . PHYSICAL REVIEW E 68, 061801 ~2003!
Note that, if the division between the head and tail regio
were located with equal probability on all sites of the cha
then one would have simplyf i5 i /N, which from Eq.~29!
implies a linear profile. The profile of Fig. 7 is linear only
the center of the chain, while it strongly deviates from li
earity close to the edges. This implies that the probability
finding the division between the head and tail regions is
in the center of the chain and drops off at the chain edg

B. Long chains and stronger fields

In this case the head zone will be dominant beyond
certain point~i.e., f i51 for i . i 0) in the chain; thus the
division between the head and tail zones is expected to
come localized close to the end of the chain which is
pulled. The curves in Fig. 9 convincingly show this behavi
It is interesting to note that whenf i→1 Eq. ~24! becomes

ni
15@12ni

0#
r h

r h11
,

ni
25@12ni

0#
1

r h11
. ~31!

It immediately implies that bothni
1 andni

2 are linearly in-
creasing functions ofi in the head zone,ni

0 being a linearly
decreasing function ofi @see Eq.~10!#. This explains the
monotonic increase ofni

2 close to the pulled end shown i
the inset of Fig. 9. Note that by using Eq.~31! one can
estimater h from the ratio of the slopes ofni

1 andni
2 in the

head region. We find a ratior h.B4, in agreement with our
crossover formulas.
.
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s
,

f
t
.

a

e-
t
.

V. DISCUSSION

We have presented a series of numerical and analy
results for the MP problem in the Rubinstein-Duke mod
where a single reptating polymer is pulled by a const
driving field applied to one polymer end. We have show
that the numerical data for the drift and curvilinear velociti
can be quite well reproduced by simple interpolating form
las following from the assumption that both velocities a
equal in the limit of long chains. Indeed, the measured d
ferences are small, which shows that the polymer is fa
stretched by the pulling force.

We studied also local quantities, such as the profi
which provide information on the shape of the reptati
chain. These are quite well understood using a representa
in which the polymer is divided into a head and tail regio
with different ratios of1 and 2 links. At small fields the
division between the two regions meanders through
whole chain, and the probability of finding it close to th
edges drops off. At strong fields the division becomes loc
ized close to the free end of the chain. Moreover, some p
files show an unexpected nonmonotonic behavior, which
a simple interpretation in the interface picture. The prec
shape of the profiles at weak fields close to the polym
edges, both at finiteN and in the asymptotic limitN→`,
will be discussed in detail elsewhere@17#.
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