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Pulling reptating polymers by one end: Magnetophoresis in the Rubinstein-Duke model
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We consider the magnetophoresis problem within the Rubinstein-Duke model, i.e., a reptating polymer
pulled by a constant field applied to a single end of a chain. Extensive density matrix renormalization calcu-
lations are presented of the drift velocity and the profile of the chain for various strengths of the driving field
and chain lengths. We show that the velocities and the average densities of the stored length are well described
by simple interpolating crossover formulas, derived under the assumption that the difference between the drift
and curvilinear velocities vanishes for sufficiently long chains. The profiles, which describe the average shape
of the reptating chain, also show such interesting features as some nonmonotonic behavior of the link densities
for sufficiently strong pulling fields. We develop a description in which a distinction is made between links
entering at the pulled head and at the unpulled tail. At weak fields the separation between the head zone and the
tail zone meanders through the whole chain, while the probability of finding it close to the edges drops off. At
strong fields the tail zone is confined to a small region close to the unpulled edge of the polymer.
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I. INTRODUCTION magnetophoresiéMP) problem[3]. It is the subject of this
paper. As we will frequently compare our findings with the

The magnetophoresis problem is a member of the class ¢hore common case of the uniformly charged polymer, we
reptation problems in which a long polymer is driven Will, for brevity, refer to the latter as the electrophorg&®)
through a gel. The reptative motion of the polymer can beProblem and to the present one as the MP problem, although
successfully modeled by a lattice version using sections ofh€ distinction between the two is not electromagnetic, but
the polymer(the reptons as the mobile units, which hop ©nly in the forces exerted on the reptdisee Fig. 1
stochastically from cell to cell. The driving field is incorpo-  The MP problem, ~within the framework of the
rated as a bias in the hopping rates, favoring the motion ifRubinstein-Duke model, has so far been studied by means of
the field direction. A simple and adequate model is theMonte Carlo simulations3], and the calculations were
Rubinstein-Duke modéﬂ_], which represents the po'ymer as mOSFly r?str|cted to the drift Ve|OCIty as a function of the
a chain ofN independently moving reptons, with the restric- @pplied field and chain length. In this paper we analyze the
tion that the integrity of the chain is preserved. The reptondIP problem by means of density-matrix renormalization-
trace out a connected string of cells in space, each cell cor#roup(DMRG) techniques, which allow us to perform a de-
taining at least one repton. The cells, which can be multiplytailed analysis of both global quantities such as drift and
occupied, carry the extra reptons as units of stored length. In
order to preserve the integrity of the chain, only those rep- €
tons that are located in cells with stored length can hop.

Usually one considers the case of polyelectrolytes in
which the reptons are uniformly charged. Thus the driving
field pulls equally on all reptons and the bias is the same for
the hopping rates all along the chain. A practical situation
where this occurs is in DNA electrophore$®. The DNA
molecules, being acidic, become charged in solution, and
when they are placed in a gel subject to an external electric (a) (b)
field, they perform a biased reptative motion along the field

direction. Electrophoresis is a technique of great importance g 1. Examples of configurations of reptating polymers in the
in molecular biology and sequence analyslls, as it allows ong pinstein-Duke model in the case @ electrophoresis anth)
to separate DNA strands according to their lendth magnetophoresis. Black reptons perform a biased motion along the

In nature the charge distribution is of course not alwaysirection of the applied field while white reptons are unbiased. The
uniform. The extreme alternative is the case where all repconfiguration for a chain withN reptons is given by a set df

tons are neutral except one end repton, which is charged. A1 integers ¢,,y,, ... yn_1) Measuring the distance between
possible realization of such a situation is a magnetic beadwo neighboring reptons along the field directigthus y,=0,
attached at one end of the polymer, which is driven by a+1). For the two examples shown the coordinates are
magnetic field. Therefore this case can be referred to as th@,0,1,1,1,0,1,1) fofa) and (1,1,1,0; 1,1,1,1,0,1,0) foxb).
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curvilinear velocities and diffusion coefficient, and also of Hermitian, due to the influence of the driving field. This

local average shapes of the polymer. restricts the applicability of the DMRG method to moder-
The dynamics of the reptating chain is governed by theately long chains and/or small driving fields.
master equation, which we put in the form The physics of the EP and MP problems is qualitatively

different. As illustration, consider the weak field case (

dP(y,t) :z H(y.y )P(Y".t) (1) smal), where the Nernst-Einstein relation= FD relates the
ot v vy yLb- drift velocity v to the total applied forc& and the diffusion
coefficientD. The forceF equalsNe in the EP case, since
Herey stands for the set of linkg, ..., yn—1, wherey;  each repton is pulled. It is well known that scales a®
measures the distance between the rept@mslj + 1, along  ~¢/N, yielding for the diffusion the nontrivial resulD

the direction of the applied field. Notice that this representa-— N~2. |n the MP problenD will be essentially the same, as
tion takes into account only the motion of the polymer alonghopping is limited by the availability of stored length. In
the field direction, i.e., the model becomes one dimensionahoth cases the motion can be considered as diffusion of
In our lattice representation thg can take the values1  stored length. SincE=e¢ in the MP problem, we expect the
and 0. The valug/; =0 corresponds to the case that the rep-drift velocity to scale as ~ N2, a feature that is borne out
tonsj andj+1 occupy the same cell. Thus each zero is apy our calculations.

unit of stored length. The nonzero values represent the cases |n Sec. Il we discuss some moment equations derived
wherej+1 occupies a cell *higher’(1) or “lower” ( —1)  from the master equation which are more helpful than in the
thanj. “Higher” and “lower” refer to the position in the EP problem in analyzing the drift and curvilinear velocity.
direction of the fieldy represents a complete configuration They are expressed in terms of the probabiliti\ésthat the

of the chain(see Fig. 1L P(y,t) is the probability distribu- link j has the valug/;=k. The sum of then}( adds up to 1:
tion of the configuration at time¢ and the matrixH(y,y’)

contains the gain and loss transitions frgmto y. The bias nP+nf+n"=1. (4)
. . . . . . J J J

in the hopping rate is contained in the matrix elementsl of

Generally, we have for the bias factor Thus it suffices to consider the two quantitie and m

defined b
B, =exp(aq;E/ksT) 2 y
0_ 2 _ At -

with g; the charge of reptof, E the driving field, a the nj=(1-yp), m={yp=n/—n;. ®)

distance between adjacent cellmeasured along the field ) .
direction, andkgT the standard combination of Boltzmann's Nj ¢an be called the local density of stored length.is a
constant and the absolute temperature. The dimensionality Gf€asure for the local orientation and will be referred to as
the embedding space affects the rate of the end repton m&2€ profile of the chain. o
tion, as ind dimensions(for a hypercubic latticethis can In Secs. Il and IV we present our data for the velocities

stretch ontod neighboring cells. This implies that the rates and the profiles. The analysis is most transparent in the
for the reactions 0-=1 for the end links aredB, and strong field limit, where we can make an ansatz which al-

dBy_;. A detailed account of the effect of the end reptonmost perfectly repre_sents the data. In Sec. IV we di;cuss the
stretching was given in Ref4]. Here, for simplicity we set behavior of the profile for weak and strong pulling fields.

d=1, i.e., the rates for the end reptons are the same as for

the bulk reptons. In the MP problem aj|=0 except forj Il. MOMENTS OF THE MASTER EQUATION
=N. We put The DMRG method deals with the whole probability dis-
Bn=B=exp(&/2) (3)  tribution P(y). In the MP problem it is fruitful to consider

moments of the master equation. One set of moments is ob-

and uses as the parameter for the driving field. The othertained by multiplying Eq(1) by y; and then summing over
parameter of the model is the number of reptdss, all y. This leads tdN—1 relations, which can be seen as an

We have chosen this “Hamiltonian form” of the master expression of the fact that the drift velocityacross all the
equation in order to stress the formal correspondence with Bl —1 links of the chain must be the same on the average. An
guantum mechanical model governed by a Hamiltonian maeven more useful set of relations is obtained by multiplying
trix. The DMRG method exploits this analogy, and indeed itsthe master equation byjz and summing over a§. The re-
success in one-dimensional quantum problems carries oveulting N—1 relations are an expression of the fact that the
to reptation problempA—6]. We are interested in the station- curvilinear velocityJ is the same across all links. These re-
ary state of the probability distribution. In quantum languagelations take the form
this corresponds to finding the right eigenvectoHdbelong-
ing to the eigenvalue zero. The adaptation of the DMRG J=n{_,—n?,
method to the MP problem is straightforward, and the data
presented in this paper are obtained by the DMRG methodwvhich can be viewed as the familiar law that the currént
An important difference from the master equation is that inequals minus the gradient of the density of the stored length.
guantum mechanical problems the Hamiltonian is Hermitian|n addition to Eq.(6) one has two relationf7] concerning
whereas in the reptation problem the matkik is non-  the traffic in and out of both ends of the chain. They read

2<j<N-1, (6)
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J=1-3n9,
J=(NR_1—Ny_1)B+(Ni_ —ny-)B ™% (7

The expression for the drift velocity involves correlations
between neighboring links,

v=((1=y{_)y;— (1=y)yj-1), ®)

and it is therefore not as informative as E6). As one sees,
Eq. (7) involves only averages over the figasy link. This
holds also for the expressions for the drift velocity in terms

log,,(v)

of the averages of the first and last link: ——— Slope=1
-5 . ‘
v=my, -2 -1 0 1
log,,(¢)
v=(NR_1+NN_1)B—(N}_;+ny_)B ™. €)

FIG. 2. Plot of log vs loge for variousN.

These equations were derived by Barkema and &d8]

using balance arguments. served in the Monte Carlo study of RéB]. The limiting
Equation(6) is a powerful relation since it allows one to behavior for smalk and largeN is thus

express the density of stored length in terms of the curvilin-

ear velocity, €

v(N)~eD(N)~—, (12

n'=nd—(j—1)J, (10 N

Showing that the density profile is linear in the position of thewith D(N) the zero field diffusion coefficient. The Scaling

cell. _Ir_1 particular_, Eq.(10) implies a relation between the behavior of D(N) as a function of the lengtN has been
densities of the first and last cells: studied quite intensively8—11]. Reptation theory predicts
n%_,=n—(N-2)J (11) that D(N)~ 1/N2, while conflicting results appeared in ex-
N-17 T ' perimental measurements, for which botiN4/and, more
We have used the linearity of the densijas a check of the recently, 1N**[12] have been reported. o
numerical calculations. A detailed study of the scaling oD(N) within the
Rubinstein-Duke model by means of the DMRG method was
recently performed4,5], for various end-point stretching
ates. In that case the diffusion coefficient was calculated
ﬁrom the limiting value of the drift velocity foe—0, with
the field acting on all reptonghe EP problerm Here we
Jﬁpeat the same analysis only for a single casgng a
stretching rated=1 following the definition ofd of Refs.
e[él,S]). The advantage of calculatiig(N) with a small field
ea_tcting only on an end repton is that the DMRG procedure is
much more stable in this case and one can compute longer
chains. This is due to the fact that in the MP problem non-
Hermiticity is restricted only to the repton where the field is
applied. As mentioned in the Introduction, non-Hermiticity
hampers the efficiency of the DMRG method.
We discuss first the behavior of global quantities like the In order to calculate the diffusion coefficient from the

drift and curvilinear velocities and the diffusion constant. ~Nernst-Einstein relatio =lim,_.ov/e in practice, we used
a small field €=10"3) and checked explicitly that the re-

A. The weak field limit sults do not change for smaller fields. The scaling behavior

R of the diffusion coefficient is expected to be
In the weak field limit the polymer assumes mostly a ran-

dom configuration and all the densitie? are close to 1/3.
The overall behavior of the drift velocity as a function ot
andN is given in Fig. 2. Note that the drift velocity becomes
proportional toe for smalle, as expected on the basis of the
Nernst-Einstein relation discussed above. For stronger fields,
the velocity saturates to finite values, as discussed in the nextith A and A’ some constants. The form of the subleading
paragraph. A similar dependence wfon ¢ andN was ob-  correction toD(N) has been debated for a whfl€3,14] and

Counting the number of unknowns (J, n%, n%_;, my,
my_1) and the number of equatiof®), (9), and(11), we see
that we have one more unknown than equations. This situ
tion is similar to the EP problem. There the expression fo
the curvilinear velocity does not obtain the simple fof®,
due to the bias on the internal reptons. So one misses relati
(11). On the other hand=0 for EP, due to the symmetry of
the polymer on exchanging head and tail. Thus in both cas
the moment equations are not sufficient to determine the v
locities. Higher moments do not lead to additional informa-
tion since again higher order correlations appear.

IIl. GLOBAL QUANTITIES

A/
D(N)N?=A+ —+--- (13

N
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FIG. 4. Difference between the drift and curvilineard veloci-
FIG. 3. Plot of the effective exponenri(N) calculated fore ties as a function of the applied field and for various chain lengths.
=102 up to N=51 from the decay of the diffusion coefficient
D(N) and plotted as a function of {N. The fact thata(N) lin-
early approaches the limiting value 2 supports the scaling form for
the diffusion coefficient given in Eq13).

v=J+2(ny_,B—nd_;B7Y). (17)

Now, if the polymer is fully stretchedy; andJ become the

recent DMRG results suggest that it is of the typgNL[5],  Same. In Fig. 4 we have plotted the difference J as cal-
supporting Eq(13). The coefficient has been determined ex-culated by the DMRG for various fields and chain lengths.
actly [14-16: A=1/3. We note that it is small for all values efandN, in particular

To analyze the scaling behavior Bf(N) it is most con-  for strong fields, and that this tendency is enforced for long

venient to use the logarithmic derivative of the DMRG data:polymers. That it also is small in the small field limit is a
consequence of the fact that both quantities vanish in that

IN[D(N)]—=In[D(N+2)] limit. In order for the difference to vanish, we must have
B INN—In(N+2) : )

o o o nR-1=B2ny_;. (18)
which is shown forN=9,11, ... ,51 inFig. 3. Substituting
Eq. (13) into Eq. (14), one finds for the effective exponent Now we may use this relation as the sixth relation, which

a(N)=2+A’/(2A{N), a behavior which is accurately re- ¢napies us to make all the desired quantities explicit func-
produced by our numerical data of Fig. 3. The present result§, s ot andN. We find. for instance

corroborate previous claim&] about the scaling form of

D(N).

)B)=u(B)= D 28*1 19

B. The strong field limit v K(B*+B2+1)+3B3’
In the strong field limit the polymer assumes an oriented
configuration, with thet links dominating at the pulled end. 1+B/K
At the other end we still have a substantial number of links O, nR,_l(B) = . (20)
2 2

since the polymer can move only by the diffusion of stored B°+1+3B/K+1/B
length from the tail to the head. Eliminatimlj from Eq.(10)
with the use of Eq(7), we get This explicit field dependence is compared to the data in Fig.

5 and Fig. 6. The agreement is excellent in both cases. Note
also that Eq.(19) is consistent with Eq(16) and that it
provides the proportionality coefficient.

However, the crossover formuldd9 and (20) do not
where K=3N—5. In order thatn_, stays finite forN  describe the subtle dependencies in the limit of small fields

ng =E(1—KJ) (15)
N—-1 3 ’

— o0, the curvilinear velocity must vanish as B=expE/2)—1. In this limit the drift velocity vanishes as
v~¢, while one observes from EqL9) that the curvilinear
J~K™ 1, N—oo. (16)  velocity vanishes ag~e&2. For this reason, in the limig

—0, the crossover formuld9) predictsy ~£2/(3N—5), in
As one sees from Ed15), this limiting value is not suffi- disagreement with the correct scaling behavior of @¢).
cient to determine the limiting value of density,_,, which  The strong field limit does not suffer from this problem. We
is sensitive to the corrections to Ed.6). For the strong field note, for instance, that in the limi— oo the saturation value
limit it is useful to relate the drift velocity to the curvilinear of the velocity for B— is in agreement with the exact
velocity. With Eqgs.(7) and(8) we get expression given in Ref3]: v=1/(3N—5).
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FIG. 5. Comparison between the DMRG ddsymbols and ) )
the crossover formulésolid lineg of Eq. (19) for the curvilinear FICE.S 7. Average profilegy;)/e for various lengths and for
velocity J. e=10".
IV. PROFILES

positioni. For intermediate fieldg=1, the densities are

Next we discuss some profiles, i.e., the local orientatiormore interesting, and in Fig. 9 we plot the valuesipf n;",
m;=(y;) as a function of the segment position along theandn; for N=51. The linear behavior fon” is consistent
chain. We consideN—1 segments; thull reptons with the  with Eq. (10). The curve fom;” is monotonically increasing,
charged one at the one head positnFigure 7 shows a byt that forn;” is not monotonically decreasing.

plot of m; /e as a function of the scaled variable1)/(N The qualitative behavior of the orientation profile can be
—2) for chains of various lengths and at fixed fiedd ynderstood by considering the “origin” of the nonzero links
=0.001. This profile corresponds to the linear regime Where(yi =+1) as introduced by Barkema and Newnj&h In the
the drift velocity scales as~s. The notable feature is a \p problem more links are created at the pulled head than at
symmetry between head and tail with respect to the center Qhe tail. They stream gradually down to the tail. We can keep
the chain, although the magnetophoresis problem is clearktack for every linky;= =1 whether it is formed at the head
asymmetric. This symmetry can be sholi7] to be strictin  or at the tail. After sufficient time the chain is divided into
the weak field limit. It disappears for stronger values of thewyo zones: a head zone and a tail zone. They are separated
field as Fig. 8 shows, where profiles are plottedderl and by a small intermediate region with zerage do not follow
various lengths\. the origin of the zergs The zones remain separated because
In order to analyze the data further we also plot the indi+pe y;==1 created at the head cannot cross the +1
vidual probabilitiesn; for having a+, 0, or — at a sitei of  created at the tail. The division between the two zones fluc-
the chain. For small values ef(not shown hergthe curves  tuates in time and occasionally the tail zone disappears,
are all near 1/3, with a slight excess of links at the head  while very rarely(particularly at large fieldsthe head zone
and a depletion of- links. The densities oft and— links  vanishes. The larger the force on the head, the larger the
are monotonically increasing and decreasing functions of thasymmetry between the head and tail zones. We supplement
these speculations by making an assumption on the ratios

p
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00 02 04 06 08 10 00 02 04 06 08 10 0.0 . . . .
1/B /B 0.0 0.2 0.4 0.6 0.8 1.0
) (i-1)/(N-2)
FIG. 6. Comparison between the DMRG dé&smbolg and the
crossover formuldsolid lineg of Eq. (20) for nﬁ,l. FIG. 8. As in Fig. 7 fore=1.
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FIG. 9. Plot of the average densitiés;"), (n?), and(n;") for
e=1 andN=51. Inset: Enlargement of the density , showing
nonmonotonic behavior with a linear increase as a functioinoof
approaching the pulled edge.

r(=p; (H/pi (), (21
wherep; () is the probability of finding a- ati when the
division is atj. We put

for

r.h i ’ (22)

ri(j)= _

=1.

1 for | (23
Herery, is an unknown parameter and as there are mere
links than— links in the head region one hag>1. Since in

the tail zone there is no distinction betweenand — we

PHYSICAL REVIEW E58, 061801 (2003

lem the situation simplifies, since we do not have to worry
about the tail zone. It drops out when we consider the profile

mi=n;"

o1 0
—n; —rthfi[l—ni]. (25)
Thus the profilem; is, apart from the known factor—ln?,
directly related to the fractiori;. The latter has a simpler
interpretation. It starts out at&=1 with a value nearly zero,
since the head zone will only seldom extend over the whole
chain. It ends at=N—1 at a value very close to 1, since the
tail zone will hardly ever extend over the whole zone. We
can use this fact to tie the ratig, to the end point values,
discussed earlier, by considering E85) for i=N—1,

rn—1 o
(Yn-1)= rh+1[1_nN*1]’ (26)
and solving forry,. It leads to
1-n0
D=(yno ) f——. 2
)=~ (27)

This form contains onlyf; as unknown. We can draw some
conclusions from Eq925) and(27) for weak fields, as well
as for long chains at stronger fields.

A. Weak fields
For e—0 we may put

rh:1+ah6. (28)

have set the ratio equal to 1. The idea underlying the assumghe function 1_ni° will approach the limit 2/3, so Eq25)
tion of ratios in the head and tail zones that do not depend 0Becomes

their position along the chain is that the and — links are

interlocked. So while moving in their zone the ratio cannot
change.

At positioni the density of nonzero linksH{ and —) is
equal to I-n?. We definef; as the fraction of such nonzero For the zero field limit of the profile we can take the zero
links that are in the head zone. Notice that, strictly speakingdfield limit of f;. It has the property that the head and tail
this is different from defining; as the probability of finding become equivalent, or
the sitei in the head zone, as we do not keep track whether
the zeros originate from the head or the tail. Only through
the + or — will we be able to identify the two regions. With
the above definition, for instance, the quanmtf(l—n?) is
the fraction of nonzero links in the head region. One ca
express the densities™ in terms off; as

(y)=eat,. 29

fi=l-fni1— or fit+fye =1 (30)
The zero field limit off, was determined if9] by Monte
rCarlo simulations. We note that E(BO0) is consistent with
the mentioned17] symmetry in{y;). One should havey,
=2 in order that the profile become%/3 at the head, as is
observedsee Fig. 7. This is perfectly in agreement with the
valuer,=B*~1+ 2¢ for smalle. Combining Eq.(29) and
the first Eq.(9) we find thatf, is a measure for the drift
velocity v. According to Eq(12) f, should vanish as 1K¥.
This result has been derived [il].

Another feature of Fig. 7 seems to be the collapse of the
data on a single curve. Further data on longer chains show
In both equations the terms proportionalficare the contri-  that the flattening off at the ends of the chain shrinks with the
butions wheni is in the head zone while the terms propor- size of the system and that the slope in the middle slowly
tional to 1—f; are the contributions from the case in which decreases. This is another manifestation of the slow approach

is in the tail zone. We see that in the magnetophoresis prolieward asymptotic behavigd 7] for large N.

+_( (" 1) 0
ny = firth"_(l_fi)E [1-n7],

. 1 1 0
n, = fiﬂ]Tl+(l_fi)§ [l—ni]. (24)
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Note that, if the division between the head and tail regions V. DISCUSSION
were located with equal probability on all sites of the chain,

Fhen_ one \.NOUId ha\_/e S|mplj/i=|_/N, Wh'Ch f.“’”.“ Eq.(29) results for the MP problem in the Rubinstein-Duke model,
implies a linear profile. The profile of Fig. 7 is linear only at |, hore 4 single reptating polymer is pulled by a constant
the center of the chain, while it strongly deviates from ””'driving field applied to one polymer end. We have shown
earity close to the edges. This implies that the probability ofhat the numerical data for the drift and curvilinear velocities
fmdmg the division betvyeen the head and tail regions is flakan pe quite well reproduced by simple interpolating formu-
in the center of the chain and drops off at the chain edges.|as following from the assumption that both velocities are
equal in the limit of long chains. Indeed, the measured dif-
B. Long chains and stronger fields ferences are small, which shows that the polymer is fairly

: . : stretched by the pulling force.

In'th|s case the Eead zone W'l.l be dom".“"‘_”t beyond & We studied also local quantities, such as the profiles,
certain point(i.e., fi=1 for i>io) n the c_haln, thus the which provide information on the shape of the reptating
division between the head and tail zones is expected 10 benain These are quite well understood using a representation
come localized close to the end of the chain which is nof, \hich the polymer is divided into a head and tail region,
pulled. The curves in Fig. 9 convincingly show this behavior.yith different ratios of+ and — links. At small fields the
It is interesting to note that whefy—1 Eq. (24) becomes  djvision between the two regions meanders through the

whole chain, and the probability of finding it close to the
nfz[l_no] Th edges drops off. At strong fields the division becomes local-
: Y1 ized close to the free end of the chain. Moreover, some pro-
files show an unexpected nhonmonotonic behavior, which has
a simple interpretation in the interface picture. The precise
M+l 31 shape of the profiles at weak fields close to the polymer
edges, both at finit?dl and in the asymptotic limilN— o,
It immediately implies that botim;" andn;" are linearly in- ~ will be discussed in detail elsewhelr&7].

creasing functions of in the head zonen! being a linearly
decreasing function of [see Eq.(10)]. This explains the ACKNOWLEDGMENTS
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